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Abstract-As a mathematical model of fluids in which cavitation may occur, wave propagation in bilinear
fluids is investigated. The principal difficulty is the determination of the a priori unknown and moving boundaries
between the two stages of the fluid.

A characteristic approach is used to study one-dimensional problems. Even in such relatively simple situations
a considerable variety of cases may occur and a lengthy analysis is required. The paper discusses also the non
trivial questions of uniqueness and existence of solutions for the bilinear model.

The procedure developed is applied to a typical example.
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sound speed in the high-density material
sound speed in the low-density material
acceleration of gravity
small positive number
length used to define non-dimensional variables
non-dimensional variable related to the momentum
actual and non-dimensional pressure
pressure at which the changeover between high- and low-density material occurs
actual and non-dimensional time
velocity of an interface (non-dimensional)
component of particle velocity in the X -direction
spatial coordinate
non-dimensional spatial variable
time and space increments
ratio of sound speeds c2le,
density
density at which the changeover between high- and low-density material occurs
non-dimensional variation in the density

1. INTRODUCTION

THIS investigation is motivated by interest in problems concerning the effect of shock
waves on structures submerged in a fluid or floating on a liquid half-space. While there
is an extensive literature [1] on such problems, the cases treated ignore cavitation, and are
therefore limited to values of applied shock intensities below levels for which cavitation
will occur. As a first step towards an understanding of the phenomena, one may conclude
intuitively that the principal influence of cavitation on a structural target will be caused
by the fact that in a cavitated region the pressure will be roughly uniform, equal to a

t This investigation was sponsored by the Office of Naval Research under Contract No. 266(86) with Columbia
University.

617



618 H. H. BLEICH and l. S. SANDLER

!--------"--------,---f--.------------"-"-- r

FIG" I(a).

nominal cavitation pressure Po- This leads to the pressure-density relation represented by
Fig. l(b). Because of lack of knowledge concerning the mathematical consequences of
assuming this degenerate relation in the analysis, the case allowing for a slight linear varia
tion of the cavitation pressure with density, Fig. l(a), will be studied.

The assumption that the cavity pressure is uniform is widely used in problems of steady
flow with cavitation. For transient situations, it has also been discussed in [2], and is
utilized in [3J and, in a modified manner, in [4]. The latter two references appear to be the
most advanced investigations available concerning dynamic problems with cavitation.
Each considers one special example of the general problem treated here. Both references
treat the formation and expansion of the cavitated region in a manner suitable for these
special cases, giving for these early stages results equivalent to the ones obtained from the
approach in this paper. However, in the subsequent stage when the cavitated region con
tracts, the analysis becomes much more complex. This situation is treated in the references
only by use of crude approximations.

The references quoted do not consider or discuss the great variety of possibilities which
exist in general in the behavior of the boundaries of cavitated regions. Moreover, the
important questions of existence and uniqueness of the solutions of the basic equations are
not mentioned or explored in either reference.

The present paper is thus concerned with an idealized problem, the propagation of
pressure waves and weak shocks in an inviscid liquid which exhibits a bilinear pressure
density relation of the type shown in Fig. l(a). The relation between the pressure P and the
density / is "hard" for values of the density above a critical value /0 and "soft" for values
below /0' This idealized problem was treated in general in [5J. Only certain of the more
important details and results appearing in [5] will be presented in this paper.

p

FIG. l(h).
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While the results are obviously applicable to the numerical solution of problems by
characteristic methods, the emphasis of the treatment is on the recognition of the physical
situations which may arise, and on the matters of uniqueness and existence of solutions.
The reason for such an emphasis is the possibility of devising finite difference schemes for
bilinear models in which not only shocks but also the boundaries between hard and soft
regions are smoothed out. Such schemes furnish numerical results which might be meaning
less if the mathematical formulation prior to the introduction of finite differences permits
several solutions or none. Because of the complexity of the analysis, only the one-dimen
sional case is considered.

In similar problems of wave propagation when the pressure-density relation is non
linear but smooth, the theory of hyperbolic differential equations gives the proofs of
existence and uniqueness, at least in the small, provided physical considerations are used
to exclude certain excess solutions [6, 7]. In the bilinear case this theory is not applicable,
because of the occurrence of a priori unknown moving interfaces between hard and soft
regions.

The investigation utilizes characteristic methods, the crux being consideration of the
situations at the interfaces. The field at these interfaces may be continuous, or may have
discontinuities requiring separate treatment. Additional special cases are caused by the
fact that regions in which Y ~ Yo can form or disappear, i.e. interfaces, considered as func
tions of time, have starting and end points. Such points correspond to singularities in the
solution, which may be severe when special interfaces start in the same location.

The degenerate case ofa pressure-density relation according to Fig. l(b) is considered as
a limit of the general bilinear case. It is found in [5J that the degenerate case remains
physically meaningful only with restrictions.

2. BASIC EQUATIONS OF THE MOTION OF THE FLUID

The behavior of the medium to be studied is defined by two different but linear pressure
density relations. These relations, and the regions in which they apply, will be referred to as
high-density, y > Yo, and low-density, y < Yo, respectively, where Yo is the density which
defines the kink in Figs. 1(a) and l(b). The two laws are

P = {Po+ci(y-Yo) for y ~ Yo

po+d(y-yo) for y :s; Yo
(2.1 )

where the constants C t > Cz may be interpreted as local sound speeds if C2 =1= O.
The continuity and momentum equations for one-dimensional flow in the X-direction

for an inviscid fluid are

Dy av
DT+YaX = 0

ap Dv
-ax+ yj = YDT

(2.2)

where v and j are velocity and body force components in the X -direction and D/DT
denotes material or total time differentiation. The analysis will be restricted to situations
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in which the density changes are smallt

(2.3)

and where the velocities are small, Ivl « ('z < ('1' By introducing the non-dimensional
variables

('I Tr = .-.-
L

x
x =--

L

V-YoP = -----
1'0

P Po
p =-----

,'od
}iv-roiTm = --_. ---.-

"OC I

(2.4)

where L is a reference length, one obtains

I) +m' = ()

m+p' = 0

{

p for p 2. 0
p-

- fJzp for p s: ()

(2.5)

(2.6)

(2.7)

where the primes and dots denote partial differentiation with respect to x and r, respectively.
and where fJ = ('z/e 1 . The inequality 0 s: ('Z < ('I' leads to the limitation 0 s: fJ < I. It is
also noted that equation (2.3) requires Ipl « 1.

The construction of the solution, uniqueness, and existence for the bilinear material will
be examined by characteristic methods, the appropriate relations being

m - p = const. on x + t = const.}
for p > 0

m +p = const. on x - t = const.

m - fJp = const. on x + fJt = const.}
for p < 0

m + fJp = const. on x - fJt = const.

(2.8)

(2.9)

where fJ > O. If the material in the vicinity of any point 0 is entirely of high- or entirely of
low-density, the established proofs for the uniform material apply and there is no problem.
If both types of material occur in such a vicinity, a more general approach for the simul
taneous determination of the interfaces and of the solution must be developed. The con
struction of the solution is treated in steps, i.e. in initial value situations the solution for
t = to +!1t is obtained from the solution at t = to' There are multitude of separate cases
to be studied depending on the configuration of the interfaces.

The analysis of initial value situations in [5J uses an inverse procedure, in steps. First,
for each possible configuration, i.e. location of interfaces, a set of necessary conditions on
the initial prescriptions is obtained. The second step is the proof that the necessary con
ditions are sufficient to guarantee existence of one and only one solution of the configura
tion studied. At a third, but later stage, the matters of uniqueness and existence require
further examination to show that for any set of initial values one and only one solution
exists.

t Otherwise the linear relations (2.1) are physically unrealistic.
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3. REGIONS WITH CONTINUOUS INITIAL PRESCRIPTIONS
CONTAINING A SINGLE INTERFACE

621

If a small but finite one-dimensional region contains both high- and low-density
locations, the line OL separating these locations in the x-t plane, Fig. 2(a), will be called an
"interface". As a special case such a line-interface may degenerate into a "neutral region"
where p == 0, Fig. 2(b).

All possible inclinations for a single interface or for several intersecting interfaces in
the vicinity of any point 0 in the x-t plane must be considered. The present section deals
with the continuation of the solution for given continuous initial values on the premise that
the continuation contains just one interface. Even if the initial prescription is continuous,
the solution may subsequently develop a discontinuity at the interface,t so that both
continuous and discontinuous solutions have to be treated.

The mathematically permissible solutions are ultimately accepted only if they also
pass a physical test, namely the requirement that mechanical energy be either conserved or
dissipated, but not created. This energy requirement eliminates interfaces which are rare
faction shocks.

(a) Continuations having one interface without discontinuity

Let the curve OL in Fig. 2(a) be a small but finite section of an interface defined by two
values of the time, to and to +1\t. Conditions on continuous initial prescriptions at t = to
near point 0 will be given which permit continuation of the solution having just one interface
without discontinuity. Along such an interface the density p must vanish, p == 0, while

Low -density
p<O,m

Interface ----..

L
-----r-t +6t

High-density I 0

p>O, m 6t

FIG.2(a).

Neutral region

Low-denSity

FIG. 2(b).

t In this respect the material exhibits a behavior similar to that of a work-hardening material with a smooth
p - p relatIOn, where the possibility of shock formation is well known.
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FIG. 3. Definition of Sectors I V

the quanity m is continuous,t m = m. Further, in the immediate vicinity of OL the in
equalities p > 0, 15 < 0 must hold for to < t ~ to +L\t, otherwise OL would not be an
interface. (The conditions p > 0, 15 < 0 may not apply for t = to, where the prescriptions
p = 0 and/or 15 = 0 may still lead to the formation of an interface for t > to.l

The details ofthe analysis depend on the location and slope of the interface with respect
to the characteristic directions, dx/dt = ± f3 and ±I, Fig. 3. Six cases, listed below, are to be
considered. In Cases 1, 3 and 5 the interface lies entirely within the respective sector as
defined in Fig. 3. For these cases an interface is still considered to lie within a sector if it is
tangent at point 0 to one of the boundaries dx/dt = ± I, ± f3 or ± 00 but does not coincide
with that boundary line. In Cases 2 and 4 the interface may either be within its respective
sector, or on one of the straight boundary lines of its sector. Case 6, finally, concerns neutral
regions of unspecified location having two boundaries intersecting at point 0 such as OF
and OG in Fig. 2(b). The cases to be treated are thus:

Case (I) Interface in Sector I.
Case (2) Interface in Sector II or on one of its boundary lines, (x - xo)/(t - to) = +II

or + I.
Case (3) Interface in Sector 111.
Case (4) Interface in Sector IV or on one of its boundary lines, (x - xo)/(t - to) = .- Ii

or -1.
Case (5) Interface in Sector V.
Case (6) Neutral region.
For reasons of brevity only Case I on the above list will be extensively presented. The

procedure in the other five cases may be found in [5].
Case 1.1nterface without discontinuity situated in Sector I, Fig. 4(a). If the curve OA in Fig. 4(a)
is an interface without discontinuity, the solution in the high-density material (to the right
ofOA and denoted by H.D.M.) is entirely defined by the initial values to the right of point O.
These values must be such that the density in the region A02 satisfies the premise p ;::0: O.
where the equal sign, P == 0, applies on the curve OA, while the inequality p > 0 applies
immediately (i.e. within a sufficiently narrow strip) to the right of the curve OA. In addition
it is necessary that 15 < 0 immediately to the left of OA, while 15 ~ 0 in the region Am, so
that no second interface occurs.

The analysis is restricted to initially prescribed densities and momenta which are
continuous and behave monotonically within some possibly small but finite region on each
side of point O. The characteristic relations (2.8, 9) then imply that the values of p and m

t The symbols p. In and ii. in refer to Ihe density and momentum in the high- and low-density regions. re
spectively.
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throughout each of the regions A02, AOP, POQ and Q03 must also be continuous and mono
tonic. Due to this monotonic behavior of the density p in the region A02, the requirement
p > 0 immediately to the right of OA may be restated as p(x) > 0 for Xo < x S Xo +61,
where 6 1 is a possibly small but finite positive number. The additional requirement pA = 0,
in conjunction with the characteristic relations (2.8) along lines At and A2, gives

(3.1 )
mA=mZ-pz·

Eliminating mA from equations (3.t) and noting P1 > 0, one may write

(3.2)

In view of the monotonic behavior of the function (m- p) along the line 02, equation (3.2)
and the requirement Po = 0 imply

(3.3)

(3.4)

Equation (3.3), in conjunction with pz > 0, permits the conclusion that the initially pres
cribed functions m(x) and p(x) must satisfy the conditions

m(x) - mo - p(x) > O}
Xo < x S Xo +6

p(x) > 0

throughout a possibly small but finite domain defined by the quantity 6 S 6 1 , Equations
(3.4) are necessary conditions for the present case.

Additional necessary conditions follow from consideration of the low density region.
The condition PA = 0 and equations (3.1), in view of the continuity of the initial prescription,
indicate that the density and momentum are continuous along the curve OA. The theory
oflinear hyperbolic partial differential equations then permits the conclusion that a contin
uation of the solution based on the differential equations for the low-density material in
the region A03 is necessarily continuous. In particular, no discontinuities may occur
along the characteristics OP and OQ because the prescription at point 0 is continuous along
the line A03. Therefore the requirements that 15 < 0 immediately to the left of line OA and
that 15 S 0 throughout the region A03, may be restated as 15p < O,15Q S 0 and 153 S O. The
last inequality gives simply the condition 15(x) S 0 for Xo - e S x < xo, where e > O.

The condition 15p < 0 is considered next. Eliminating mpfrom the characteristic relations
along OP and PA leads to

(3.5)

which, in view of equation (3.3), indicates that the requirement 15p < 0 is automatically
satisfied.

To treat the requirement 15Q S 0, the momentum mQis eliminated from the characteristic
relation along OQ and Q3 to obtain

2fJ15Q = {3153 +m3-mo·

Introduction of the requirement 15Q S 0 gives

m3-mO +{3153 sO

(3.6)

(3.7)
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(3.8)

which, in conjunction with P3 S 0, permits the conclusion that the initially prescribed
functions in and Pmust satisfy the conditions

m(x)-rno+f3p(x) S o} _ .
Xo-F, S X < X o'

p(x) S °
Equations (3.8) were derived from the requirements PQ S °and P3 S °which assure

that no second interface occurs. It can easily be shown from the appropriate characteristic
relations that the converse is true, i.e. that equations (3.8) insure that the conditions PQ S °
and P3 S °are satisfied. As it has already been shown that the condition Pp < °is a con
sequence of equation (3.4), the relations (3.4, 8) together form not only a set of necessary
conditions but a set of sufficient conditions, provided that an interface OA in Sector 1
exists.

To demonstrate that equations (3.4, 8) guarantee the existence of the interface in
Sector I for a possibly small but finite interval of time, let point 2 be an arbitrary point to
the right of, but sufficiently close to point 0, Fig. 4(a). Equations (3.4) imply then the inequali
ties

(3.9)

Since the initial values have been assumed to be continuous and monotonic, equation
(3.9) implies that the function [rn(x) - rno +p(x)] vanishes at x = Xo and is positive, con
tinuous and monotonic in a finite domain Xo < Xl S Xo + F,. Noting pz > 0, there exists

------r
tl t

ll~~-to

FIG 4(a). Case I

,
'-..

" ,
--'-~~~~----'\";o--(-l_/ ._..---+--.~. '<,/2 to

(V-l)dt !

--_~dt__ (V+1)~t ~

FIG.4(b).
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thus a unique point 1 on the initial line between points 0 and 2 (not coinciding with either)
such that

(3.10)

Equations (3.1) can thus be satisfied and the point A may be determined uniquely from
points 1 and 2. By varying the initial point 2, the above considerations indicate that the
locus of points A defines a curve entirely in Sector I which is unique for any set of initial
values satisfying equations (3.4, 8). However, this curve can be accepted as an interface
only ifits derivative, the velocity, satisfies dx/dt > 1 at all points between 0 and A, because
the characteristic construction would otherwise not be valid. This condition may not be
satisfied for the entire range of points 2 for which equation (3.4) hold, but will be satisfied
for a sufficiently small range, because it was found that point 1 lies to the right of point O.

Due to the existence of the interface OA on which p = 0, the conventional uniqueness
and existence theorems for linear partial differential equations apply, and the solution in
the high-density region exists and can be uniquely determined from the prescription on
x 2 xo. This furnishes values of m on OA which together with the prescription on x < Xo
similarly define the solution in the low-density region. Conditions (3.4, 8) are thus seen to
be necessary and sufficient for the continuation of the solution of the type considered.

The above considerations do not yet answer the question as to whether alternate
solutions with interfaces in other sectors might exist for initial prescriptions satisfying
equations (3.4, 8). This matter will be considered later.

Conditions (3.4, 8) are not convenient for use in numerical computations in which the
initial functions m(x), p(x), ;n(x) and p(x) are known only at isolated points. In such cases
each of the initial functions is assumed expandable in a power series on the appropriate
side of point O. Truncation of the expansions (retaining only first derivatives) and sub
stitution into equations (3.4, 8) leads to an alternative set of sufficient conditions

m' > p' > 0

in' > pp' > 0 (3.11)

p' > 0

where m', p', in' and p' are the one-sided derivatives at point 0 of m(x), p(x), ;n(x), p(x),
respectively. The inequalities (3.11) are somewhat more restrictive than equations (3.4, 8)
and, while sufficient, are not necessary conditions.

In numerical computations it may also be desirable to have an expression for the
velocity of the interface. To find the velocity V = V(to)at point 0 one may use an asymptotic
approach in which the conditions in the neighborhood of point 0, Fig. 4(a), are considered
only in the limit as!'1t - O. For this purpose reference is made to Fig. 4(b) in which the time
difference At is replaced by the time differential dt. Noting the locations of points 1 and 2
in Fig. 4(b), substitution of the truncated series expansions for m(x) and p(x) into equation
(3.10) gives

m'
V= V(to) =-----;.

p
(3.12)

Cases 2 through 6. It is demonstrated in [5] that Cases 2 and 4 lead to contradictions, so
that of the Cases 2 to 6 only Cases 3,5 and 6 can occur. The results of the analysis presented
in [5] for these cases (as well as some other cases to be discussed later) are summarized in
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TABLE J(a). SIMPLIFIED (SUFFICIENT) CONDITIONS IN TERMS OF FIRST DERIVATIVES [p'(Xo) :> 0, /J"(X,,) > OJ

ffi'
=< ,,-1
P

m'P' ,,1

Cas€! 3

Case 7

ffi' ,,-{3 +
p'

CaS€! 5

m'
p'

Cas.e 1

Cas€! 9 if
p'

> z(-.p

Cas€! 11 ,f
p'
fJ

Case 10 If E
p'

Case 12 if
p'

<P'

m'pi >.;3

~>_,1
P

<·1

._-----_..._------_..._ ..._.•.

T AIlLE l{b). NECESSARY AND SUFFICIENT CONDlTIONS PROVIDED fI(X) :> n, lie;;!) (I

--q~';~~-~(X)';'T-~(x» 0 1
Case 3

G(x) > g(x)

._. ._.__..... ......__...l.L.LL.L.....-....IL__....J

Case 7

q(x) ~ q(x)

q(x) ~ (k~)

q(x) 0 q(x); (V 1)

Case 6 Case 1

q(x)<O

(\(x)o 0

q(x»O

Tables I(a) and l(b). The former gives results in terms of first derivatives, and the latter gives
the general results for initial prescriptions where p(x) > 0 and p(x) < O. The ranges of
applicability of the various solutions in Table l(b) are defined by inequalities or equalities
on the functions

q(x) = m(x)-mo-p(x),

q(x) = m(x)-mo + {Jp(.x)

q(x) = m(x) - mo- {Jp(x)
x < .X < X O'

(3.\3)
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These functions are combinations of the initially prescribed densities and momenta at
three related points x > xo, X < Xo and x < Xo in the (finite) neighborhood of the point 0
in which the solution is to be obtained. The locations x and xare functions of Xo and of the
generic point x,

_ 2fJ
x = xo---(x-xo)

I-fJ
_ I-fJ _
x = xo---(xo-x).

l+fJ

(3.14)

(b) Interfaces with discontinuity

Up to this point a variety of cases have been considered for which the continuation of
the solution contains either an isolated interface without discontinuity or a neutral region.
It is now necessary to determine whether the continuation of the solution may contain an
interface with a discontinuity even when the initial prescription is continuous. The situation
is much more complex than in cases without discontinuity.

Prior to the determination of specific initial prescriptions for which discontinuities
occur, the general character of interfaces with discontinuities will be considered. At such
an interface the two separate solutions of the differential equations in the adjoining high
and low-density regions must satisfy the physical conservation laws. Figure 5 shows the

Low
density

Lx

R

FIG. 5.

High
density

interface in the x-t plane, its velocity at point 0 being V. The relevant physical laws allow for
two types of discontinuities-contact discontinuities and shocks. An interface of the former
type need not be considered here because it is incompatible with the pressure-density
relation (2.1) for fJ i= 0 (a contact discontinuity requires that the pressure be continuous
while the density is not). For a shock, the relations expressing the conservation of mass and
momentum, when used in conjunction with the assumption that the particle velocities are
small compared to V, give

Using equation (2.7) this becomes

which limits V to the range

m-m p-pv=--=--p-p m-iif

v= ±IP-fJ!I
P-P

fJ :$; /VI :$; 1.

(3.15)

(3.16)

(3.17)
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x:: x,

Before studying solutions with discontinuities at the interfaces it is appropriate to check
whether their occurrence does not violate energy considerations.t It was shown in [5] that
positive velocities V which represent rarefaction shocks are not permissible, except when
V = + {3 or + I. Only these two positive velocities, resulting in rarefaction shocks, do not
violate energy considerations. However, these two velocities cannot occur for continuous
initial prescriptions, as shown in [5].
Case 7. Interface with discontinuity situated in sector I V or on one ~f its boundary lines,
Fig. 6. To determine the initial prescriptions for which such an interface occurs, the values

---;-----:---::--~-~3-----c5~- to

x:: X3

FIG. 6. Case 7.

PD, mD and PD, roD applying on opposite sides of the interface at point D, Fig. 6, must be
distinguished. One may then write the characteristic relations

mD+{3PD = ml +{3PI

(3.18)

and the shock relations, (3.15, 16),

m -m
V(t) = D D

PD-PD
(3.19)

Several requirements will be formulated which must be satisfied at various points,
Fig. 6. Excluding temporarily the possibility that the interface coincides with one of the
straight boundary lines OQ or OR, the requirements to be considered are PI S 0, PD < 0,
PD > 0, Pp ~ 0 and Ps ~ O. (The possibilities PD = 0, PD = 0 are not allowed because the
second of equation (3.19) indicates that they correspond to the temporarily excluded cases
V(t) = - {3, -1 when the interface coincides with OQ or OR, respectively.) In addition to
these five relations, the velocity of the interface at point D is thus subject to the inequality

t Considerations based on entropy changes, usually invoked in the study of shocks, are not applicable because
the model for the material in this study ignores changes in temperature. As a result, the model used permits the
occurrence of (weak) rarefaction shocks within a high-density or within a low-density region.
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- I < V(t) < - (3. Introduction of the bound V(t) < - {3 into the first of the equation
(3.19) requires

(3.20)

Due to the monotonic behavior of the solution in each of the sectors DOl, DOP and P05,
the above requirements assure that the solution complies with the premise of a single
interface. These requirements will be used to obtain a set of necessary conditions.

The inequality (3.20) may be rearranged,

mn+{3Pn < mn+{315n

which gives, after use of Pn > 0 and of the first and third of equation (3.18),

(3.21)

(3.22)

The last inequality may be strengthened as follows. Due to the monotonic behavior of the
solution on the line lQD, the requirements 15 1 :s;; O. 15n < 0 permit the conclusion 15Q < O.
This inequality and the requirement Pp ~ 0, after use of the characteristic relations along
Ql, Q4 and OP, P5 give respectively

(3.23)

The second of equations (3.23) and monotonic behavior imply

(3.24)

which, when substituted into equation (3.22) yields finally

(3.25)

Equations (3.23, 25) in conjunction with 151 :s;; 0 and Ps ~ 0 permit thus the conclusion that
the following conditions are necessary:

q(x) < ij(x) < q(x)

q(x) :s;; 0

p(x) ~ 0

15(x) :s;; 0

(3.26)

where q, ij, q and xand xare defined by equations (3.13, 14).
It is shown in [5J that the necessary conditions stated above are also sufficient for the

existence of a solution of the type considered, provided the initial prescriptions are ex
pandable in power series on each side of point O. The lengthy and involved proof is omitted
for reasons of brevity.

The conditions for the two previously excluded situations, i.e. V(t) = - (3 and -I are
indicated in Table l(b) in the strips at the top and bottom, respectively, of the portion of the
table covered by Case 7.
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A simplified set of sufficient conditions in terms of first derivatives may be obtained from
equations (3.26), and is shown in Table l(a). The velocity V = V(to), in terms of first deriva
tives is the appropriate root of the quadratic equation

[iii' - p' +(p-m)']V2+2[iii' - p2 p'+(p-m)']V + [P2(iii' - p')+(p -mY] = O. (3.27)

In conclusion, it is noted that the discontinuities in the density and velocity at the
interfaces vary as functions of the time t, a situation to be expected for a non-characteristic
shock. Since the initial prescription at t = to is continuous, the discontinuities begin with
a zero value at point O.

(c) Review oj' the above results

Based on an inverse approach, sets of conditions have been found which define con
tinuous initial prescriptions for which solutions of the assumed nature exist, namely
solutions with just one interface in a particular sector. It is helpful at this point to review
the results in order to find the total range of initial prescriptions for which the above
solutions apply.

Because of the simplicity of the alternate requirements in terms of first derivatives, the
situation listed in the non-shaded portion of Table 1(a), is discussed first. (The shaded
portion of the table is based on cases not yet considered.) The table, which is self-explana
tory, shows the range of applicability of the various cases as functions of the parameters
m'/p' and m'/p'. It is seen that for m'/p' < 1, Cases 3, 7 and 5 apply for the entire range of
values of iii'/p' without overlap. However, the table does not disclose the situation on the
boundaries between the cases. It is further seen from Table l(a) that Case 1 applies for a
portion of the range m'/p' > 1, while none of the Cases 1-7 apply for initial prescriptions
for which m'/p' > 1 and iii '/15 , < - p, i.e. in the shaded portion.

To obtain a summary of the applicability of the various cases when the complete neces
sary and sufficient requirements are used, only initial prescriptions where p(x) > 0 and
p(x) < 0 are considered in Table l(b). (The details when p(x) = 0 and/or p(x) = 0 are
listed in [5].) Table 1b shows that there is just one applicable case for each combination of
the functions q, q and qfor which a solution has been shown to exist. Further, a solution is
always found except when, simultaneously, q(x) > 0 and q(x) > O. This open region is
shaded in Table l(b), and corresponds to the shaded region in Table l(a).

Table I(b) clarifies the situation at the boundaries between the cases, when inequalities
between two of the descriptive functions degenerate into equalities. For example, the
boundary between Case 3 and Case 7 is given by q(.\') = q(x). If this relation holds, the
table indicates that a solution according to Case 7 applies.

If the initial prescriptions satisfy any of the conditions obtained, the solution may be
continued from t = toto t = to + 1'.1. The proof that the continuation exists is based on the
premise of continuous and monotonic behavior, and for Case 7, on the possibility of
expanding m, p, etc., near point O. The requirements are thus again applicable for the
continuation of the solution beyond t = to +1'.t provided the premises are satisfied. In
Cases I, 3,5 and 6 it may be shown in a nearly trivial manner that the solution at t = to + 1'.t
satisfies the premises. In Case 7 the solution becomes discontinuous, a situation yet to be
considered.

Finally, it is noted that there is a range of initial prescriptions corresponding to the
shaded regions in Tables I(a) and I(b) for which the premise of one interface does not lead
to a solution. Further, for uniqueness, it remains to be shown that no alternate solutions
exist if the requirements listed in Table I(b) hold.
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4. REGIONS WITH SEVERAL INTERFACES, DISCONTINUOUS INITIAL
PRESCRIPTIONS, CLOSURE AND USE OF THE APPROXIMATION

{3=0

The first step in the treatment of cases with multiple interfaces is the recognition of the
fact that no more than one interface may occur in each of the Sectors I through V defined
by Fig. 3. This is proved in [5] by showing that the presence of two interfaces in any sector
leads to contradictions. An upper limit is thus obtained on the number of cases which have
to be investigated. The investigation [5] shows that, allowing for symmetry, actually only
nine cases with two interfaces and four with three interfaces are possible.

Regions containing three interfaces

It was found in the preceding section that there are continuous initial prescriptions with
p(,x) < 0, p(x) > 0 where no solution with one interface exists. It is demonstrated in [5J
that solutions with three interfaces are required for such prescriptions, and that these
solutions do not furnish alternatives to the cases studied in Section 3. The possible cases
with three interfaces are shown in Fig. 7 and the conditions for their occurrence are included
in Table lea).

" 0\

E

FIG. 7.

Regions containing two interfaces

If the initial prescriptions on the density to the right (R) and to the left (L) of the point 0
considered are similar, i.e. either PR > 0 and PL > 0, or PR < °and PL < 0, while p(xo) = 0,
the continuation may contain in general either no interface, or two interfaces [5]. The
case PR > 0, PL > 0 is of considerable interest because it describes the initiation of a
cavitated region. It was found in [5] that four basic possibilities having two interfaces may
occur, shown in Fig. 8, and the conditions for each were determined. These conditions are
listed in Table 2.

For initial prescriptions PR < 0, PL < 0 it is shown in [5] that five possibilities having
two interfaces exist. These are not given in detail because this case concerns the rather rare
formation of an uncavitated region within a cavitated one.
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FIG. 8. (Letters ED. EC. etc.. denote the cases listed in Table 2.)

TA8LE 2. NECESSARY AND SUFFICIENT CONDITIONS PROVIDED PR(XR) > 0, pJ'.) > 0

qR(XR) < 0 qR(XR) 0 0 qR(xR) > 0

EC

qR(XR»QT(7))

EF AE qL(X l ) < 0
ED

qR(XR):S qTh)

AG qL(X l ) 0 0

~---.-

No Interface
AC

~ee qL(X l ) > 0
below

AB

~--l
The cases listed in this table are illustrated in Fig. 8. The
quantities q., qL' 7), and &T are 1

q.(x.) 0 m.(xR) - mo - P.(x.) , XO<XR:SXO+ER
i

ql(X l )- ml(xL)-mO -PL(X L), XO-€L ~ Xl < X o

I2../2 (3
T) 0 ~ (x.-xo )

1 - {3 I

',I" 0 m,I" - m.'"'1"1
The boundary between Cases AC and AS may be obtained by consider-
at�on of symmetry from the boundary between Cases EC and ED

Continuation of the solution along an interface with discontinuity

It has previously been found that discontinuous conditions may occur, Case 7. At
such an interface, Fig. 5, the relations (3.15, 16) apply. The premise that these relations
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hold for t ::; to insures that the discontinuous prescriptions for t = to satisfy the shock
relation

(m-m)2 = (p-p)(p-p). (4.1)

To avoid the discussion of special cases which occur when p or p vanishes, only initial
prescriptions p > 0 > Pare considered. Equation (3.16) then gives a value for the velocity
V == V(to) in the range f3 < V < 1, thus permitting continuation of the solution by means
of the characteristic relations (3.18) in combination with the shock relations (3.19). The
latter are identical with equations (3.15, 16) except for the subscripts.

Having shown that the.inequality f3 < V < 1 holds, the proof of existence given in [5]
for Case 7 applies again. While the proof of uniqueness for Case 7 remains applicable and
thus indicates that only one solution of the type considered here exists, uniqueness for
the present case has not been fully proved in [5]. Completion of the proof would require
demonstration that other configurations do not furnish alternative solutions.

Closure

The cases of multiple interfaces discussed above apply to situations in which a low
density region forms within a high-density region, or vice-versa. The alternative situation
in which an existing region disappears because two interfaces converge has also been
considered in [5]. It was found that in all cases at least one of the interfaces can be construc
ted, through use of the methods previously employed, prior to the determination of the
point of closure and independently of the second interface. This second interface may then
be constructed by employing the initial prescription together with the data on the first
interface. Therefore no difficulty arises in the determination of the point of closure.

Boundary conditions

In physical problems, boundary conditions may be prescribed in conjunction with
initial prescriptions, and it is necessary to consider the construction of the solution near a
boundary. If no interface occurs at the boundary, the construction of the solution presents
no difficulty for f3 > 0 because the usual characteristic construction near boundaries may
be used. In addition, intersections of interfaces with boundaries may occur and can be
treated for f3 > 0 by the methods developed in [5J. If f3 = 0, however, the situation near a
boundary requires further consideration, see [5].

Use of the approximation f3 = 0 when f3 « 1

The justification for the useofa bilinearmodel to represent a fluid in cavitation problems
is based on the fact that the cavitation pressure is expected to vary much less (as a function
of the density) than the pressure in the uncavitated region. This implies that f3 is very much
smaller than unity, and suggests that a numerical analysis might be based on the limiting
value f3 = 0, leading to a somewhat simpler procedure. The applicability of the approxima
tion f3 = 0 is investigated (and confirmed) in [5] under the following restrictions:

(I) Cavitated (low-density) regions which occur are bounded only by interfaces, i.e.
cavitated regions do not come into contact with a physical boundary, such as the surface
of a solid.

(2) The refined analysis based on f3 =fie 0 does not lead to an interface in the central sector,
Sector III in Fig. 3.
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When the above two conditions are satisfied, the use of the value j) = () leads to no
difficulties, and the results can be expected to be an approximation, the accuracy of which
is a function of the magnitude of j).

5. NUMERICAL EXAMPLE, COMMENTS ON REFERENCES [3J AND [4J,
AND CONCLUSION

(a) Numerical example

The results obtained in the preceding sections were used to determine the response of a
horizontal layer of mass on the surface of a half-space of fluid, Fig. 9. A plane pressure

Atmospheric

sur.face" m, ass, W,") , " pre. 55, u.re

~~~, ~/ ~ I) I JJ)J}
\ ' /
\ I !
I . I
~U"'''"'" Iw," - /

FlUid X /
half-space~

x >0

Pressure History

FI<;. 9.

wave with a sudden rise and an exponential decay moves toward the surface, reaching the
mass at the time t = O. The system is subject to gravity and atmospheric pressure, all
particles being at rest prior to arrival of the shock. The analysis is based on the degenerate
model with f3 = 0, the applicability of which will be verified subsequently, using the
criteria given in Section 4.

The parameters used in the problem are
sound speed in the liquid, CI = 4670 ft/sec
sound speed in the cavitated region, C2 ~ 0
peak value of the pressure wave, Ps = 103 psia
decay length of the pressure wave, L = 4.74 ft
atmospheric pressure, PA = 14.7 psia
mass density of liquid, Yo = 1.94 slugs/ft 3

gravity, g = 32.2 ft/sec l

surface mass per unit of area, W = 0.921 slugs/ft l

cavitation pressure, Po = O.
The differential equations are equations (2.5, 6, 7) with f3 = 0, while the initial and

boundary conditions are, respectively,

F\ x
m(x, 0) = -·~2e

YoCI

(5.1 )
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(5.2). YOL[ PA Jm(O, t) = - ~2 - p(O, t)
W YOCI

where x === X/L and t = Cl TIL.

The numerical solution was obtained by a characteristic approach. The history of the
cavitated region is shown in Fig. 10. No cavitation occurs until t = tx, at which time the
requirements for the combination AE of Fig. 8 apply, i.e. the boundary of the cavitated
region during opening consists of two branches, X Yand X Z, each being of the type treated
as Case 1. The simple form of the incoming wave permits the determination of a closed
solution f(x, t) = 0 for the portion YXZ of the boundary. At the terminal points Y, Z the
opening interfaces become tangent to the characteristics ± 1.

t, non-dimensional time

12

11

10

7

6

5

4

3

2

1
Case7f;':....e..--_

Z X

Cavitated Region

Interface with
/ discontinuity

non-dimensional depth, x

o 0.4 08 12 1.6 20 2.4

FIG. 10. Time-history of cavitated region.

The continuation of the solution near point Y depends on the values of m and p for
t = t y • These values are such that a discontinuous interface, Case 7, develops. The change
in the type of the interface is due to the fact that the value of the derivative of (m - p) to
the right ofthe interface changes sign at t t y . For t < t y the sign is positive, as appropriate
for Case 1, while for t > t y the sign is negative, as appropriate for Case 7. At t = t y the
character of the solution is governed by higher (second) derivatives, which indicate the
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applicability of Case 7, the velocity of the interface being IVyI = l A similar situation
applies at point Z.

At the time t = t w the two interfaces intersect, leading to closure. The impact of the two
bodies of liquid at the time t = t w generates two compressive shock waves in the (sub
sequently uncavitated) fluid for t > tw . One of the shocks at a later time reaches the surface,
so that a reflected wave of underpressure ensues. However, the intensities are low, and no
further cavitation occurs for t > two

Before discussing the behavior of the mass, the applicability of the approximation
f3 = 0 is verified. The cavitated region did not reach the boundary x = 0, so that the first
restriction stated for the use of f3 = 0 is satisfied. Further, the interface configurations
found by use of the value f3 = 0, Cases 1, 7 and the continuation of the interface with
discontinuity, can be shown to be of the same types for other, small values of f3. The second
requirement for the use of f3 = °is thus also satisfied. It can therefore be asserted that the
solution obtained is a good approximation to the solution which would be found by use
of the theory based on equations (2.5, 6, 7) with f3 * 0, provided the actual value of {3 is
small compared to unity.

lt is also necessary to confirm that the linearization leading to equations (2.5, 6, 7) is
permissible for the data used in the example. This requires Ipl « 1 and that the magnitude
of the particle velocity is everywhere small in comparison to the local sound speed, even in
the cavitated region. The non-dimensional value, u, of the particle velocity in the example
may be determined from the last of equations (2.6). Its magnitude,

(5.3)

should be less than the actual value of f3. The values of Ipl and lui were found not to exceed
2 x 10- 3 and 10- 3, respectively. The condition on Ipl is thus clearly satisfied. In the absence
of information on the actual value of f3, one can only say that the linearization is appropriate
if f3 is sufficiently larger than 10- 3.

For structural purposes the motion of the mass is of interest. The history of its velocity
is shown in Fig. 11. This figure also indicates the history if cavitation in the fluid is ignored,
i.e. if tension in the fluid is permitted. It is seen that the mass reaches its peak velocity prior
to the onset of cavitation, so that this peak velocity is not affected by cavitation. However,
if the displacement of the mass is considered, the solution allowing for cavitation will lead
to a larger peak value of the displacement, because subsequent to the onset of cavitation the
positive velocity is larger. The difference in the peak displacement in this example is sub
stantial, about 40 %.

An interesting phenomenon in the history of the velocity of the mass occurs at the time
t = ts when the secondary shock, generated by the closure of the cavitated region at
t = t w , reaches the surface. This shock causes the very rapid drop in the absolute value of
the velocity subsequent to t = t s '

Characteristic methods, although quite appropriate in one-dimensional problems
become unwieldy in multi-dimensional problems. In such situations finite difference
schemes are appropriate. Such schemes can be tested against the above numerical result.
A finite difference scheme based on the method of Lax [6J was applied to the above example.
This scheme approximates equations (2.5, 6, 7, 5.1, 2) by means of central space differences
and forward time differences in a staggered grid. The numerical solution obtained gave
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excellent results for grid ratios I1tj!J.x ~ 1 combined with grid sizes smaller than !J.x =
!J.XjL = 0·01. An extension of this scheme appears thus suitable for multi-dimensional
problems.

(b) Comments on references [3J and [4J

Reference [3J treats a problem which is quite similar to the one treated in (a), except that
the layer of mass is elasto-plastically supported. Making the assumption that the cavitation
pressure is zero, the opening of the cavitated region obtained in the reference is in complete
agreement with the present analysis for f3 = O. In the subsequent closing stage, Ref. [3J
disregards all compressibility and wave propagation effects, so that only a crude approxima
tion is obtained.

Reference [4J is not concerned with structural response. It contains the reflection of
pulses from a surface solely under the action of gravity and atmospheric pressure. The
shape of the pulses is similar to the one used in the above example. This reference also
assumes that the cavitation pressure vanishes, but assumes a tensile breaking stress in
the liquid which must be exceeded prior to cavitation. For the situation considered, Ref. [4J
shows as a first step that this assumption does not lead to cavitation in the usual sense,
but to layers of liquid separated by voids. The reference proceeds to approximate these
alternate layers by a cavitated region, by using a limiting process based on the assumption
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that the breaking strength is low compared to the stress level. For the problem considered
this process leads to opening velocities of the cavitated region which agree with the ones
found from the present analysis. In the later stages, when the cavitated region closes,
Ref. [4J utilizes the approximate approach of Ref. [3]. A comparison indicates that the
cavitated region closes according to Ref. [4J much later than according to an analysis based
on the present approach. It is important to note that this difference is not due to the intro
duction of the breaking strength, but solely due to the omitted effects of wave propagation
during the collapse of the cavitated region.

In Ref. [8J, a continuation of the work in Ref. [4J, numerical results on the opening in
three-dimensional situations are reported. In addition, planned work on the closing stage
is outlined, which includes allowance for the shocks generated at closing due to compres
sibility effects. As mentioned in the example, such shocks are obtained in the present
analysis.

(c) Conclusion

The problem of one-dimensional wave propagation in a bilinear fluid has been con
sidered by a characteristic approach, the emphasis being put on the determination of the
interfaces. Excluding singular situations and discontinuous initial prescriptions which were
not fully considered, it was found in [5J that solutions to the bilinear problem for P> 0
exist and are unique. It was further shown in [5J that a degenerate bilinear fluid, (3 = 0,
Fig. l(b), can be used with restrictions.

The results obtained for the one-dimensional case are also applicable to two dimensional
steady-state problems, [9]. In such cases a transformation x - Vt = ~ reduces the problem
to one in two variables. This may be utilized to check two-dimensional computations
based on finite difference methods.

The complications in treating two- or three-dimensional problems in a bilinear fluid
by characteristic methods are so severe that finite difference approaches appear preferable.
The fact that in the one-dimensional case for (3 ¥ 0 no difficulty with uniqueness and exi
stence was found, leads to the expectation that a numerical approach on the same basis
will be permissible. However, as indicated earlier, the use of the simplification fJ 0 may
not be permissible without restrictions and requires further investigation.
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A6cTpaKT-B CMhlcne MaTeMaTII'IeCKOH. Mo):\enll JKII):\KocTeH, y KOTOphlX MoryT nOllBnllTCli KIIBIITel..\lI11
IIccne):\yeTcli pacnpe):\eneHlle BonHhI B 611nllHeHHhix JKII):\KOCTliX. OCHOBHOH. TPY):\HOCThlO lIBnlleTCli
onpe):\eneHlle anpHopH HeH3BeCTHhiX H ):\BIIJKymllxclI npe):\enoB MeJK):\y ):\ByMlI CTa):\lIaMH JKII):\KOCTH.

vlcnonh3yeTclI xapaKTepHCTH'IecKllii no):\xo):\ ):\nll IIccne):\OBaHlIlI O):\HOMepHhIX 3a):\a'l. )].aJKe ):\nll TaK
OTHOCHTenhHO :meMeHTapHhlx cny'laeB, MOJKeT nOllBnllTClI 3Ha'iIlTenhHoe IIX KOnll'leCTBO; Heo6xo):\IIMhlH
TaKJKe rpoMo3):\KHH aHanH3. Pa60Ta o6cYJK):\aeT TaKJKe HeTp"BlanbHble BonpochI e):\IIHCTBeHHOCTII H
cymecTBoBaHlIlI pemeHHH ):\nll 611nllHeHHoH Mo):\enll.

Ope):\cTaBneHHhlH np0l..\ecc np"MeHlIeTcli ):\nll THnH'IHoro npHMepa.


